Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 6 квадратов больше, чем в предыдущей. Сколько квадратов в 27-й строке?
Данная фигура составляется по принципу
арифметической прогрессии.
Очевидно, что a1=6, а d=6.
Надо найти a27.
Воспользуемся формулой an=a1+(n-1)d
a27=6+(27-1)6=6+26*6=162
Ответ: в 27-ой строке 162 квадрата.
Поделитесь решением
Присоединяйтесь к нам...
Последовательность (cn) задана условиями:
c1=5, cn+1=cn-4.
Найдите c6.
Выписаны первые несколько членов геометрической прогрессии: 184; -92; 46; ... Найдите её четвёртый член.
Записаны первые три члена арифметической прогрессии: 10; 6; 2. Какое число стоит в этой арифметической прогрессии на 101-м месте?
Геометрическая прогрессия (bn) задана условиями:
b1=-7, bn+1=3bn.
Найдите сумму первых пяти её членов.
Дана арифметическая прогрессия (an), разность которой равна -8,1, a1=1,4. Найдите a6.
Комментарии: