Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 6 квадратов больше, чем в предыдущей. Сколько квадратов в 27-й строке?
Данная фигура составляется по принципу
арифметической прогрессии.
Очевидно, что a1=6, а d=6.
Надо найти a27.
Воспользуемся формулой an=a1+(n-1)d
a27=6+(27-1)6=6+26*6=162
Ответ: в 27-ой строке 162 квадрата.
Поделитесь решением
Присоединяйтесь к нам...
Дана арифметическая прогрессия (an), разность которой равна -8,5 и a1=-6,8. Найдите a5.
Дана арифметическая прогрессия (an), для которой a6=-7,8, a19=-10,4. Найдите разность прогрессии.
Записаны первые три члена арифметической прогрессии: -6; 1; 8. Какое число стоит в этой арифметической прогрессии на 51-м месте?
Геометрическая прогрессия задана условиями b1=-6, bn+1=2bn. Найдите b6.
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 2 квадрата больше, чем в предыдущей. Сколько квадратов в 39-й строке?
Комментарии: