ОГЭ, Математика. Числовые последовательности: Задача №85A015 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Любой член арифметической прогрессии можно записать через первый член прогрессии (a1) и разность прогрессии: an=a1+(n-1)d
a6=a1+(6-1)d
-7,8=a1+5d
-7,8-5d=a1 (1)
a19=a1+(19-1)d
-10,4=a1+18d
Подставляем значение a1 из уравнения (1):
-10,4=-7,8-5d+18d
-10,4+7,8=13d
-2,6=13d
d=-0,2
Ответ: -0,2

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №4B425F

В первом ряду кинозала 22 места, а в каждом следующем на 2 больше, чем в предыдущем. Сколько мест в двенадцатом ряду?



Задача №F23165

Геометрическая прогрессия задана условиями b1=-6, bn+1=2bn. Найдите b6.



Задача №67A808

Геометрическая прогрессия (bn) задана условиями: b1=-1, bn+1=2bn. Найдите b7.



Задача №4D6C7C

Дана геометрическая прогрессия (bn), знаменатель которой равен 2, b1=16. Найдите b4.



Задача №ABECC0

Дана арифметическая прогрессия (an), в которой a9=-15,7, a18=-22,9.
Найдите разность прогрессии.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Арифметическая прогрессия - числовая последовательность вида a1, a1+d, a1+2d,..., a1+(n-1)d,...то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага, или разности прогрессии):
an=an-1+d
Любой (n-й) член прогрессии может быть вычислен по формуле общего члена:
an=a1+(n-1)d, где a1 - первый член последовательности, d - ее разность.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика