Арифметическая прогрессия (an) задана условиями a1=48, an+1=an-17. Найдите сумму первых 17 её членов.
В данной
арифметической прогрессии каждый последующий член меньше предыдущего на 17, следовательно d=-17
Вычислим сумму первых 17-и членов:
S17=(2a1+(n-1)d)n/2=(2*48+(17-1)(-17))*17/2=(96+16(-17))*17/2=-176*17/2=-88*17=-1496
Ответ: S17=-1496
Поделитесь решением
Присоединяйтесь к нам...
Арифметическая прогрессия задана условием an=-0,6+8,6n. Найдите сумму первых 10 её членов.
В геометрической прогрессии сумма первого и второго членов равна 40, а сумма второго и третьего членов равна 160. Найдите первые три члена этой прогрессии.
Арифметическая прогрессия (an) задана условиями: a1=3, an+1=an+4. Найдите a10.
В геометрической прогрессии сумма первого и второго членов равна 48, а сумма второго и третьего членов равна 144. Найдите первые три члена этой прогрессии.
Дана арифметическая прогрессия (an), разность которой равна -8,1, a1=1,4. Найдите a6.
Комментарии: