Арифметическая прогрессия (an) задана условиями a1=48, an+1=an-17. Найдите сумму первых 17 её членов.
В данной
арифметической прогрессии каждый последующий член меньше предыдущего на 17, следовательно d=-17
Вычислим сумму первых 17-и членов:
S17=(2a1+(n-1)d)n/2=(2*48+(17-1)(-17))*17/2=(96+16(-17))*17/2=-176*17/2=-88*17=-1496
Ответ: S17=-1496
Поделитесь решением
Присоединяйтесь к нам...
Выписаны первые три члена геометрической прогрессии:
125; -100; 80; …
Найдите её пятый член.
Последовательность задана условиями a1=3, an+1=an+4. Найдите a10.
Геометрическая прогрессия (bn) задана условиями:
, bn+1=-3bn.
Найдите b7.
Последовательность задана условиями a1=3, an+1=an-4. Найдите a10.
Выписаны первые несколько членов арифметической прогрессии: 1; 3; 5; … Найдите сумму первых семидесяти её членов.
Комментарии: