Арифметическая прогрессия (an) задана условиями a1=48, an+1=an-17. Найдите сумму первых 17 её членов.
В данной
арифметической прогрессии каждый последующий член меньше предыдущего на 17, следовательно d=-17
Вычислим сумму первых 17-и членов:
S17=(2a1+(n-1)d)n/2=(2*48+(17-1)(-17))*17/2=(96+16(-17))*17/2=-176*17/2=-88*17=-1496
Ответ: S17=-1496
Поделитесь решением
Присоединяйтесь к нам...
Записаны первые три члена арифметической прогрессии: -7; -1; 5; … Какое число стоит в этой арифметической прогрессии на 91-м месте?
Записаны первые три члена арифметической прогрессии: -4; 2; 8; … Какое число стоит в этой арифметической прогрессии на 81-м месте?
Дана арифметическая прогрессия (an), в которой a10=-10, a16=-19.
Найдите разность прогрессии.
Выписаны первые несколько членов арифметической прогрессии: -7; -4; -1; … Найдите сумму первых десяти её членов.
Дана арифметическая прогрессия (an), разность которой равна 7, a1=9,4. Найдите a13.
Комментарии: