ОГЭ, Математика. Алгебраические выражения: Задача №23916A | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Алгебраические выражения: Задача №23916A

Задача №158 из 374
Условие задачи:

Какое наибольшее число последовательных натуральных чисел, начиная с 1, можно сложить, чтобы получившаяся сумма была меньше 561?

Решение задачи:

Иными словами, 1+2+3+4+...+n<561. Чему равен максимальный n?
Это арифметическая прогрессия, разность прогрессии d=1, используем формулу суммы:
Sn=(2*1+(n-1)*1)*n/2
Эта сумма должна быть меньше 561.
(2*1+(n-1)*1)*n/2<561
(2+n-1)n<1122
n2+n-1122<0
Решим это неравенство, решив сначала уравнение n2+n-1122=0
D=12-4*1*(-1122)=1+4488=4489
n1=(-1+67)/(2*1)=66/2=33
n2=(-1-67)/(2*1)=-68/2=-34
Т.е. n∈(-34;33), заметьте крайние точки не включаются.
nmax=32
Ответ: 32

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №18DA69

Решите уравнение x3+5x2=9x+45.



Задача №340F3B

Упростите выражение



Задача №0B1558

Найдите значение выражения



Задача №061ED0

Найдите значение выражения при a=1/7, b=1/2.



Задача №0B8E42

Значение какого из данных выражений является наибольшим?
1) 3,6
2) 40,2
3) 64/4
4) 11/6*6/3

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Арифметическая прогрессия - числовая последовательность вида a1, a1+d, a1+2d,..., a1+(n-1)d,...то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага, или разности прогрессии):
an=an-1+d
Любой (n-й) член прогрессии может быть вычислен по формуле общего члена:
an=a1+(n-1)d, где a1 - первый член последовательности, d - ее разность.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика