ОГЭ, Математика. Геометрия: Задача №7C1BCF | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

∠ADC=∠BDA+∠BDC=54°+33°=87°.
Трапеция ABCD - равнобедренная (т.к. AB=CD), следовательно, по свойству равнобедренной трапеции, ∠BAD=∠ADC=87°.
Сумма углов любого выпуклого n-угольника равна 180°*(n-2).
Тогда сумма углов трапеции равна 180°*(4-2)=360°, следовательно ∠ABC+∠BCD=360°-87°-87°=186°
По тому же свойству равнобедренной трапеции ∠ABC=∠BCD, тогда каждый из этих углов равен 186°/2=93°
В любой трапеции основания параллельны (по определению), т.е. AD||BC, тогда, рассматривая BD как секущую, заметим, что ∠CBD=∠BDA=54° (т.к. это внутренние накрест лежащие углы).
Тогда ∠ABD=∠ABC-∠CBD=93°-54°=39°
Ответ: 39

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №23E335

Радиус окружности, описанной около равностороннего треугольника, равен 16. Найдите высоту этого треугольника.



Задача №183D76

Радиус окружности с центром в точке O равен 85, длина хорды AB равна 80. Найдите расстояние от хорды AB до параллельной ей касательной k.



Задача №049FC2

Четырехугольник ABCD вписан в окружность. Угол ABC равен 92°, угол CAD равен 60°. Найдите угол ABD. Ответ дайте в градусах.



Задача №6AB9FA

В прямоугольном треугольнике катет и гипотенуза равны 16 и 20 соответственно. Найдите другой катет этого треугольника.



Задача №231CA8

Найдите площадь треугольника, изображённого на рисунке.

Комментарии:


(2017-10-04 18:10:11) Администратор: Без вопроса, нет ответа.
(2017-10-03 15:43:18) : в трапеции авсд известно что ав сд угол вда 30 и угол вдс 110

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства равнобедренной трапеции:
1) Диагонали равнобедренной трапеции равны .
2) Углы при одном основании равнобедренной трапеции равны.
3) Только около равнобедренной трапеции можно описать окружность; она совпадает с окружностью, описанной около любого треугольника с вершинами в вершинах трапеции. Её центр лежит на серединном перпендикуляре к основаниям трапеции.
4) Если центр описанной окружности лежит на основании трапеции, то ее диагональ перпендикулярна боковой стороне.
5) В равнобедренную трапецию можно вписать окружность, если боковая сторона равна средней линии.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика