ОГЭ, Математика. Геометрия: Задача №F5E39D | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №F5E39D

Задача №115 из 1087
Условие задачи:

Какие из данных утверждений верны? Запишите их номера.
1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
2) Треугольник со сторонами 1, 2, 4 существует.
3) Если в ромбе один из углов равен 90°, то такой ромб — квадрат.

Решение задачи:

Рассмотрим каждое утверждение.
1) "Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой", это утверждение верно по свойству параллельных прямых.
2) "Треугольник со сторонами 1, 2, 4 существует", это утверждение неверно,т.к. длина одной из сторон не может быть больше суммы длин двух других сторон (а 4>1+2).
3) "Если в ромбе один из углов равен 90°, то такой ромб — квадрат". Чтобы ромб был квадратом, необходимо, чтобы все 4 угла были равны 90°.
Т.к. ромб - частный случай параллелограмма, то к нему и применимы все свойства параллелограмма, следовательно (по свойству параллелограмма), противоположный прямому углу, угол тоже равен 90°.
Другие два угла по тому же свойству равны друг другу.
Сумма углов многоугольника вычисляется по формуле (n-2)*180°, где n - количество углов. В нашем случае, углов - 4. Тогда сумма углов равна (4-2)*180°=360°.
Тогда получается, что сумма двух неизвестных углов равна 360°-90°-90°=180°. А так как они равны друг другу, то каждый из них равен 180°/2=90°.
Т.е. мы узнали, что все четыре угла равны по 90°, следовательно это утверждение верно.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №4534C9

Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=3, AD=5, AC=24. Найдите AO.



Задача №C8980C

В треугольнике АВС углы А и С равны 20° и 60° соответственно. Найдите угол между высотой ВН и биссектрисой BD.



Задача №72DA6E

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 17:10, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 30.



Задача №56CD5D

В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника BMC.



Задача №2D9C40

Сторона ромба равна 26, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?

Комментарии:


(2014-11-04 14:54:06) Администратор: Галина, очень рад, что наш сайт Вам помог!
(2014-11-04 14:44:19) Галина: всё верно у меня стоит пять за все эти задания в том числе и это!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства параллелограмма:
1) Противоположные стороны параллелограмма равны.
2) Противоположные углы параллелограмма равны.
3) Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
4) Сумма углов, прилежащих к одной стороне, равна 180°
5) Точка пересечения диагоналей является центром симметрии параллелограмма.
6) Сумма всех углов равна 360°(сумма углов многоугольника = 180( n - 2), где n кол-во углов).
7) Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон: пусть а — длина стороны AB, b — длина стороны BC, d1 и d2 — длины диагоналей; тогда d12+d22 = 2*(a2 + b2).
Признаки параллелограмма.
Четырёхугольник ABCD является параллелограммом, если выполняется одно из следующих условий:
1) Противоположные стороны попарно равны: AB = CD, AD = BC.
2) Противоположные углы попарно равны: ∠A = ∠C, ∠B = ∠D.
3) Диагонали делятся в точке их пересечения пополам: AO = OC, BO = OD.
4) Сумма соседних углов равна 180 градусов: ∠A + ∠B = 180°, ∠B + ∠C = 180°, ∠C + ∠D = 180°, ∠D + ∠A = 180°.
5) Противоположные стороны равны и параллельны: AB = CD, AB || CD.
6) Сумма расстояний между серединами противоположных сторон выпуклого четырехугольника равна его полупериметру.
7) Сумма квадратов диагоналей равна сумме квадратов сторон параллелограмма: AC2+BD2 = AB2+BC2+CD2+DA2.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика