ОГЭ, Математика. Геометрия: Задача №524DD7 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №524DD7

Задача №295 из 1087
Условие задачи:

Укажите номера верных утверждений.
1) Центр вписанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника.
2) Ромб не является параллелограммом.
3) Сумма острых углов прямоугольного треугольника равна 90°.

Решение задачи:

Рассмотрим каждое утверждение:
1) "Центр вписанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника". Центр вписанной окружности любого треугольника - точка пересечения биссектрис (по свойству вписанной окружности). А в равнобедренном треугольнике высота, проведенная к основанию является и биссектрисой и медианой ( свойство). Следовательно, это утверждение верно.
2) "Ромб не является параллелограммом", это утверждение неверно, т.к. противоречит определению ромба.
3) "Сумма острых углов прямоугольного треугольника равна 90°". В теореме о сумме углов треугольника говорится, что сумма всех углов треугольника равна 180°. В прямоугольном треугольнике один из углов равен 90°, следовательно, сумма двух оставшихся углов равна 180°-90°=90°. Т.е. это утверждение верно.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №33624D

В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 75°. Найдите величину угла ODC.



Задача №55503E

Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN и CM пересекаются в точке O, AN=21, CM=15. Найдите OM.



Задача №E5BAE8

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.



Задача №029772

Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали ромба точкой пересечения делятся пополам.
3) Из двух хорд окружности больше та, середина которой находится дальше от центра окружности.



Задача №A2BBBF

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=2:3, KM=14.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства вписанной в треугольник окружности:
1) В каждый треугольник можно вписать окружность, притом только одну.
2) Центр I вписанной окружности называется инцентром, он равноудалён от всех сторон и является точкой пересечения биссектрис треугольника.
3) Радиус вписанной в треугольник окружности равен:
.
4) Если AB — основание равнобедренного треугольника ABC, то окружность, касающаяся сторон угла ACB в точках A и B, проходит через инцентр треугольника ABC.
5) Формула Эйлера: R2-2Rr=|OI|2, где R — радиус описанной вокруг треугольника окружности, r — радиус вписанной в него окружности, O — центр описанной окружности, I — центр вписанной окружности.
6) Если прямая, проходящая через точку I параллельно стороне AB, пересекает стороны BC и CA в точках A1 и B1, то A1B1=A1B + AB1.
7) Точки касания вписанной в треугольник T окружности соединены отрезками — получается треугольник T1.
7.1) биссектрисы T являются серединными перпендикулярами T1.
7.2) Пусть T2 — ортотреугольник T1. Тогда его стороны параллельны сторонам исходного треугольника T.
7.3) Пусть T3 — серединный треугольник T1. Тогда биссектрисы T являются высотами T3.
7.4) Пусть T4 — ортотреугольник T3, тогда биссектрисы T являются биссектрисами T4.
8) Радиус вписанной в прямоугольный треугольник с катетами a, b и гипотенузой c окружности равен:

9) Расстояние от вершины С треугольника до точки, в которой вписанная окружность касается стороны, равно:

10) Расстояние от вершины C до центра вписанной окружности равно:

где r — радиус вписанной окружности, а гамма — угол вершины C.
11) Расстояние от вершины C до центра вписанной окружности может также быть найдено по формулам:


12) Теорема о трезубце или о трилистнике: Если W — точка пересечения биссектрисы угла A с описанной окружностью, а I — центр вписанной окружности, то |WI|=|WB|=|WC|.
13) Лемма Веррьера: пусть окружность V касается сторон AB, AC и дуги BC описанной окружности треугольника ABC. Тогда точки касания окружности V со сторонами и центр вписанной окружности треугольника ABC лежат на одной прямой.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика