ОГЭ, Математика. Геометрия: Задача №524DD7 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №524DD7

Задача №295 из 1087
Условие задачи:

Укажите номера верных утверждений.
1) Центр вписанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника.
2) Ромб не является параллелограммом.
3) Сумма острых углов прямоугольного треугольника равна 90°.

Решение задачи:

Рассмотрим каждое утверждение:
1) "Центр вписанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника". Центр вписанной окружности любого треугольника - точка пересечения биссектрис (по свойству вписанной окружности). А в равнобедренном треугольнике высота, проведенная к основанию является и биссектрисой и медианой ( свойство). Следовательно, это утверждение верно.
2) "Ромб не является параллелограммом", это утверждение неверно, т.к. противоречит определению ромба.
3) "Сумма острых углов прямоугольного треугольника равна 90°". В теореме о сумме углов треугольника говорится, что сумма всех углов треугольника равна 180°. В прямоугольном треугольнике один из углов равен 90°, следовательно, сумма двух оставшихся углов равна 180°-90°=90°. Т.е. это утверждение верно.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №B6379E

Сумма двух углов равнобедренной трапеции равна 50°. Найдите больший угол трапеции. Ответ дайте в градусах.



Задача №FE6C06

Картинка имеет форму прямоугольника со сторонами 24 см и 37 см. Её наклеили на белую бумагу так, что вокруг картинки получилась белая окантовка одинаковой ширины. Площадь, которую занимает картинка с окантовкой, равна 1440 см2. Какова ширина окантовки? Ответ дайте в сантиметрах.



Задача №5561BC

На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны (см. рисунок). Оказалось, что углы АDB и BEC тоже равны. Докажите, что треугольник АВС — равнобедренный.



Задача №11BB1D

Один из острых углов прямоугольного треугольника равен 57°. Найдите его другой острый угол. Ответ дайте в градусах.



Задача №956EDE

Найдите площадь параллелограмма, изображённого на рисунке.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства вписанной в треугольник окружности:
1) В каждый треугольник можно вписать окружность, притом только одну.
2) Центр I вписанной окружности называется инцентром, он равноудалён от всех сторон и является точкой пересечения биссектрис треугольника.
3) Радиус вписанной в треугольник окружности равен:
.
4) Если AB — основание равнобедренного треугольника ABC, то окружность, касающаяся сторон угла ACB в точках A и B, проходит через инцентр треугольника ABC.
5) Формула Эйлера: R2-2Rr=|OI|2, где R — радиус описанной вокруг треугольника окружности, r — радиус вписанной в него окружности, O — центр описанной окружности, I — центр вписанной окружности.
6) Если прямая, проходящая через точку I параллельно стороне AB, пересекает стороны BC и CA в точках A1 и B1, то A1B1=A1B + AB1.
7) Точки касания вписанной в треугольник T окружности соединены отрезками — получается треугольник T1.
7.1) биссектрисы T являются серединными перпендикулярами T1.
7.2) Пусть T2 — ортотреугольник T1. Тогда его стороны параллельны сторонам исходного треугольника T.
7.3) Пусть T3 — серединный треугольник T1. Тогда биссектрисы T являются высотами T3.
7.4) Пусть T4 — ортотреугольник T3, тогда биссектрисы T являются биссектрисами T4.
8) Радиус вписанной в прямоугольный треугольник с катетами a, b и гипотенузой c окружности равен:

9) Расстояние от вершины С треугольника до точки, в которой вписанная окружность касается стороны, равно:

10) Расстояние от вершины C до центра вписанной окружности равно:

где r — радиус вписанной окружности, а гамма — угол вершины C.
11) Расстояние от вершины C до центра вписанной окружности может также быть найдено по формулам:


12) Теорема о трезубце или о трилистнике: Если W — точка пересечения биссектрисы угла A с описанной окружностью, а I — центр вписанной окружности, то |WI|=|WB|=|WC|.
13) Лемма Веррьера: пусть окружность V касается сторон AB, AC и дуги BC описанной окружности треугольника ABC. Тогда точки касания окружности V со сторонами и центр вписанной окружности треугольника ABC лежат на одной прямой.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика