ОГЭ, Математика. Геометрия: Задача №F5E39D | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №F5E39D

Задача №115 из 1087
Условие задачи:

Какие из данных утверждений верны? Запишите их номера.
1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
2) Треугольник со сторонами 1, 2, 4 существует.
3) Если в ромбе один из углов равен 90°, то такой ромб — квадрат.

Решение задачи:

Рассмотрим каждое утверждение.
1) "Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой", это утверждение верно по свойству параллельных прямых.
2) "Треугольник со сторонами 1, 2, 4 существует", это утверждение неверно,т.к. длина одной из сторон не может быть больше суммы длин двух других сторон (а 4>1+2).
3) "Если в ромбе один из углов равен 90°, то такой ромб — квадрат". Чтобы ромб был квадратом, необходимо, чтобы все 4 угла были равны 90°.
Т.к. ромб - частный случай параллелограмма, то к нему и применимы все свойства параллелограмма, следовательно (по свойству параллелограмма), противоположный прямому углу, угол тоже равен 90°.
Другие два угла по тому же свойству равны друг другу.
Сумма углов многоугольника вычисляется по формуле (n-2)*180°, где n - количество углов. В нашем случае, углов - 4. Тогда сумма углов равна (4-2)*180°=360°.
Тогда получается, что сумма двух неизвестных углов равна 360°-90°-90°=180°. А так как они равны друг другу, то каждый из них равен 180°/2=90°.
Т.е. мы узнали, что все четыре угла равны по 90°, следовательно это утверждение верно.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №41017F

В треугольнике ABC известно, что AC=38, BM — медиана, BM=17. Найдите AM.



Задача №9CE80E

Площадь параллелограмма ABCD равна 28. Точка E — середина стороны AB. Найдите площадь трапеции DAEC.



Задача №2D06EF

Биссектрисы углов B и C трапеции ABCD пересекаются в точке O, лежащей на стороне AD. Докажите, что точка O равноудалена от прямых AB, BC и CD.



Задача №FC3809

Какие из данных утверждений верны? Запишите их номера.
1) Любой параллелограмм можно вписать в окружность.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Точка пересечения двух окружностей равноудалена от центров этих окружностей.



Задача №83CBAE

ABCDEFGHIJ – правильный десятиугольник. Найдите угол ADI. Ответ дайте в градусах.

Комментарии:


(2014-11-04 14:54:06) Администратор: Галина, очень рад, что наш сайт Вам помог!
(2014-11-04 14:44:19) Галина: всё верно у меня стоит пять за все эти задания в том числе и это!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Ромб - это параллелограмм, у которого все стороны равны. Ромб с прямыми углами называется квадратом.
Свойства ромба:
1) Ромб является параллелограммом. Его противолежащие стороны равны и попарно параллельны, АВ||CD, AD||ВС.
2) Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам.
3) Диагонали ромба являются биссектрисами его углов (∠DCA = ∠BCA, ∠ABD = ∠CBD и т. д.).
4) Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4 (следствие из тождества параллелограмма).
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика