В параллелограмме ABCD точка E — середина стороны CD. Известно, что EA=EB. Докажите, что данный параллелограмм — прямоугольник.
Рассмотрим треугольники BCE и EDA. CE=ED, т.к. точка E - середина CD, EA=EB (из условия задачи), CB=AD (по свойству параллелограмма). Соответственно, треугольники BCE и EDA равны (по третьему признаку равенства треугольников).
Из равенства этих треугольников следует, что /BCE=/EDA.
BC||AD (по определению параллелограмма), рассмотрим сторону CD как секущую к этим параллельным сторонам. Тогда получается, что сумма углов BCE и EDA равна 180°, т.к. эти углы являются внутренними односторонними. Отсюда следует, что каждый из этих углов равен 90°.
Теперь рассмотрим стороны AB и CD, они параллельны (тоже по определению параллелограмма). Рассмотрим сторону BC как секущую к этим параллельным сторонам.
/CBA и /ECB - внутренние односторонние. Следовательно их сумма равна 180°. А так как /ECB=90°, то /CBA тоже равен 90°.
Аналогично доказывается, что /DAB тоже равен 90°.
Параллелограмм, у которого все углы прямые (т.е. 90°) называется прямоугольником (по определению).
Поделитесь решением
Присоединяйтесь к нам...
Найдите площадь трапеции, изображённой на рисунке.
Площадь прямоугольного треугольника равна 50√
Найдите острые углы прямоугольного треугольника, если его гипотенуза равна 16, а площадь равна 32√
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
Радиус окружности с центром в точке O равен 85, длина хорды AB равна 80. Найдите расстояние от хорды AB до параллельной ей касательной k.
Комментарии: