ОГЭ, Математика. Геометрия: Задача №1340D7 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №1340D7

Задача №310 из 1087
Условие задачи:

Найдите угол АDС равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной АВ углы, равные 30° и 40° соответственно.

Решение задачи:

AD||BC (по определению трапеции). Тогда AC является секущей для этих параллельных отрезков.
/BCA=/CAD, т.к. они внутренние накрест-лежащие.
Тогда /BAD=30°+40°=70°.
По свойству равнобедренной трапеции /BAD=/ADC=70°.
Ответ: /ADC=70°.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №051A2A

В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AKD.



Задача №BF15E0

Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=3 и MB=12. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.



Задача №FBF9BC

Площадь прямоугольного треугольника равна 3923. Один из острых углов равен 30°. Найдите длину катета, лежащего напротив этого угла.



Задача №0AD23F

Найдите угол ABC. Ответ дайте в градусах.



Задача №DC7D62

Синус острого угла A треугольника ABC равен . Найдите CosA.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Трапеция – это четырёхугольник, две противоположные стороны которого параллельны, а две другие не параллельны. Параллельные стороны трапеции называются основаниями, а непараллельные — боковыми сторонами.

Прямоугольная трапеция — трапеция, имеющая прямые углы при боковой стороне.
Трапеция, у которой боковые стороны равны, называется равнобокой, равнобочной или равнобедренной.
Средняя линия — отрезок, соединяющий середины боковых сторон.
Площадь трапеции вычисляется по следующим формулам:
, или
, где m - средняя линия трапеции.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика