ABCDEFGHI – правильный девятиугольник. Найдите угол BAG. Ответ дайте в градусах.
Вариант 1 (Предложил пользователь Светлана)
Вокруг любого
правильного многоугольника можно описать окружность, сделаем это.
Очевидно, что отрезки, проведенные из центра окружности к углам девятиугольника образуют равные углы, так как разбивают девятиугольник на равные треугольники.
Такой угол (например ∠DOE) равен 360°/9=40°
Тогда ∠BOG, который опирается на дугу BCDEFG равен:
∠BOG=40°*5=200°
∠BOG является
центральным, следовательно градусная мера дуги BCDEFG тоже равна 200°
∠BAG тоже опирается на эту же дугу, но является
вписанным, следовательно:
∠BAG=200°/2=100° (по
теореме о вписанном угле)
Ответ: 100
Поделитесь решением
Присоединяйтесь к нам...
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=36, MN=28. Площадь треугольника ABC равна 162. Найдите площадь треугольника MBN.
В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен 75°. Найдите величину угла OAB.
Укажите номера верных утверждений.
1) Медиана равнобедренного треугольника, проведённая из вершины угла, противолежащего основанию, делит этот угол пополам.
2) Не существует прямоугольника, диагонали которого взаимно перпендикулярны.
3) В плоскости для точки, лежащей вне круга, расстояние до центра круга больше его радиуса.
Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
В трапеции ABCD AB=CD, AC=AD и ∠ABC=95°. Найдите угол CAD. Ответ дайте в градусах.
Комментарии:
(2015-10-18 17:24:17) Валентина: Иногда знания отягощают,т.е.уводят от простого решения.
(2015-01-30 10:48:28) Администратор: Светлана, гениально! Обязательно добавлю Ваше решение...
(2015-01-30 10:25:17) Светлана: Такие задачи проще решать через дугу и вписанный угол. Вписанный угол равен половине дуги на которую опирается. Любой правильный многоугольник можно вписать в окружность. Вершины девятиугольника разделят окружность на 9 дуг, каждая из которых будет равна 40 градусам. Данный угол будет опираться на дугу в 200 градусов. 200:2=100.