Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC=15° и ∠OAB=8°. Найдите угол BCO. Ответ дайте в градусах.
Вариант №1 Предложила пользователь Надя.
Проведем отрезок OB.
Рассмотрим треугольник AOB.
Так как AO=BO (это радиусы окружности), то данный треугольник
равнобедренный.
Следовательно, ∠OAB=∠ABO=8° (по
свойству равнобедренного треугольника)
∠OBC=∠ABC-∠ABO=15°-8°=7°.
Треугольник BOC тоже
равнобедренный, т.к. OB=OC (радиусы окружности).
Следовательно, ∠OBC=∠BCO=7° (по
свойству).
Ответ: 7.
Вариант №2
Продолжим отрезок AO до отрезка BC, пересечение обозначим буквой E (как показано на рисунке).
Рассмотрим треугольник ABE. По
теореме о сумме углов треугольника запишем:
180°=∠OAB+∠ABC+∠BEA
180°=8°+15°+∠BEA
∠BEA=180°-8°-15°=157°
Смежный этому углу ∠OEC=180°-∠BEA=180°-157°=23° (запомним это)
Угол ABC является
вписанным углом, следовательно градусная мера дуги, на которую он опирается, вдвое больше (по
теореме о вписанном угле), т.е. градусная мера дуги AC равна 15°*2=30°
Угол АОС является
центральным и, соответственно, равен градусной мере дуги, на которую опирается. А опирается он на дугу AC, следовательно ∠AOC=30°
Смежный этому углу ∠COE=180°-∠AOC=180°-30°=150°
Рассмотрим треугольник OCE.
По
теореме о сумме углов треугольника запишем:
180°=∠OEC+∠COE+∠OCE
Вспомнив то, что запомнили ранее...
180°=23°+150°+∠OCE
∠OCE=180°-23°-150°=7°
∠OCE и есть искомый угол BCO.
Ответ: ∠BCO=7°
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC проведена биссектриса AL, угол ALC равен 152°, угол ABC равен 137°. Найдите угол ACB. Ответ дайте в градусах.
Какие из данных утверждений верны? Запишите их номера.
1) Против большей стороны треугольника лежит меньший угол.
2) Любой квадрат можно вписать в окружность.
3) Площадь трапеции равна произведению средней линии на высоту.
Какие из следующих утверждений верны?
1) Средняя линия трапеции равна сумме её оснований.
2) Диагонали ромба перпендикулярны.
3) Площадь треугольника меньше произведения двух его сторон.
В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 6.
В треугольнике ABC угол C прямой, AC=6, cosA=0,6. Найдите AB.
Комментарии:
(2015-05-24 16:29:10) алексей: Большое спасибо разработчикам сайта. Очень помогли.
(2014-11-29 23:16:26) Администратор: Денис, очень неплохое решение. Решений может быть очень много, например доказательств теоремы Пифагора около 600 (если не ошибаюсь).
(2014-11-29 20:55:25) Денис: Я по другому решил. Вот решение, ТОЛЬКО смысл постараюсь передать: 1)в четырехугольнике сумма углов = 360 2)т.к. АВС вписанный угол а АОС центральный опираются на одну и ту жу дугу значит АОС(меньший) =30 градусам. 3) значит угол АОС больший будут равен (360-30)=330 градусам 4)360=(330+8+15+ВСО) 360=345+8+ВСО 15=8+ВСО ВСО=7 градусов Ответ: 7