В треугольнике ABC проведена биссектриса AL, угол ALC равен 152°, угол ABC равен 137°. Найдите угол ACB. Ответ дайте в градусах.
Пусть ∠BAL=x
Тогда, ∠LAC тоже =x (так как AL -
биссектриса).
Рассмотрим треугольник ABC:
∠ABC+∠ACB+∠CAB=180° (по
теореме о сумме углов треугольника).
137°+∠ACB+2x=180°
∠ACB+2x=43°
x=(43°-∠ACB)/2
Рассмотрим треугольник ALC:
∠ALC+∠ACB+∠LAC=180° (по
теореме о сумме углов треугольника).
152°+∠ACB+x=180°
∠ACB+x=28°
Подставляем значение x, полученное ранее:
∠ACB+(43°-∠ACB)/2=28° |*2
2∠ACB+43°-∠ACB=56°
∠ACB=56°-43°=13°
Ответ: 13
Поделитесь решением
Присоединяйтесь к нам...
Площадь прямоугольного треугольника равна 98√
Стороны AC, AB, BC треугольника ABC равны 3√
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=1:4, KM=13.
В треугольнике ABC AB=BC=37, AC=24. Найдите длину медианы BM.
Основания трапеции равны 9 и 54, одна из боковых сторон равна 27, а косинус угла между ней и одним из оснований равен √
Комментарии: