Точка О – центр окружности, /AOB=130° (см. рисунок). Найдите величину угла ACB (в градусах).
По условию /AOB=130°, этот угол является
центральным, соответственно дуга АВ (нижняя часть) тоже равна 130°. /ACB - является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле). Соответственно, 130/2=65.
Ответ: /ACB=65°.
Поделитесь решением
Присоединяйтесь к нам...
Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC относится к длине стороны AB как 9:7. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.
Площадь параллелограмма ABCD равна 30. Точка E – середина стороны CD. Найдите площадь трапеции ABED.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=66, AC=44, MN=24. Найдите AM.
В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 75°. Найдите величину угла ODC.
Сторона равностороннего треугольника равна 18√3. Найдите радиус окружности, описанной около этого треугольника.
Комментарии: