На окружности с центром в точке O отмечены точки A и B так, что ∠AOB=66°. Длина меньшей дуги AB равна 99. Найдите длину большей дуги AB.
∠AOB является центральным, поэтому градусная мера дуги, на которую он опирается тоже равна 66°.
Так как градусная мера всей окружности составляет 360°, то градусная мера большей дуги равна:
360°-66°=294°
Теперь систавим пропорцию:
Для 66° - длина дуги 99
Для 294° - длина дуги x
66/294=99/x
x=294*99/66=294*1,5=441
Ответ: 441
Поделитесь решением
Присоединяйтесь к нам...
Сколько досок длиной 4 м, шириной 20 см и толщиной 30 мм выйдет из бруса длиной 80 дм, имеющего в сечении прямоугольник размером 30 см на 40 см?
Площадь прямоугольного треугольника равна 128√
В треугольнике ABC угол C равен 90°, sinB=4/9, AB=18. Найдите AC.
Биссектрисы углов C и D параллелограмма ABCD пересекаются в точке K стороны AB. Докажите, что K — середина AB.
Укажите номера верных утверждений.
1) Существует ромб, который не является квадратом.
2) Если две стороны треугольника равны, то равны и противолежащие им углы.
3) Касательная к окружности параллельна радиусу, проведённому в точку касания.
Дуга, на которую опирается центральный угол имеет ту же градусную меру.
Комментарии: