Точка О – центр окружности, /BOC=60° (см. рисунок). Найдите величину угла BAC (в градусах).
По условию /BOC=60°, этот угол является
центральным, соответственно дуга ВC тоже равна 60°. /BAC - является
вписанным углом и равен половине дуги, на которую опирается (по теореме о вписанном угле). Соответственно, 60/2=30.
Ответ: /BAC=30°.
Поделитесь решением
Присоединяйтесь к нам...
Катеты прямоугольного треугольника равны 8 и 6. Найдите синус наименьшего угла этого треугольника.
Площадь прямоугольного треугольника равна
722√
Синус острого угла A треугольника ABC равен . Найдите CosA.
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника AMK.
В прямоугольном треугольнике один из катетов равен 24, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.
Комментарии: