Катеты прямоугольного треугольника равны 8 и 6. Найдите синус наименьшего угла этого треугольника.
Так как треугольник
прямоугольный, то можем применить
теорему Пифагора:
AB2=BC2+AC2
AB2=82+62
AB2=64+36=100
AB=10
Меньший угол лежит напротив меньшей стороны, следовательно
синус меньшего угла будет равен
отношению меньшей стороны к гипотенузе, т.е. 6/10=0,6
Ответ: 0,6
Поделитесь решением
Присоединяйтесь к нам...
Один из острых углов прямоугольного треугольника равен 48°. Найдите его другой острый угол. Ответ дайте в градусах.
В прямоугольнике одна сторона равна 96, а диагональ равна 100. Найдите площадь прямоугольника.
Найдите угол АСО, если его сторона СА касается окружности, О — центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна
110°.
Найдите площадь треугольника, изображённого на рисунке.
Найдите угол АВС равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной CD углы, равные 20° и 100° соответственно.
Комментарии: