Катеты прямоугольного треугольника равны 8 и 6. Найдите синус наименьшего угла этого треугольника.
Так как треугольник
прямоугольный, то можем применить
теорему Пифагора:
AB2=BC2+AC2
AB2=82+62
AB2=64+36=100
AB=10
Меньший угол лежит напротив меньшей стороны, следовательно
синус меньшего угла будет равен
отношению меньшей стороны к гипотенузе, т.е. 6/10=0,6
Ответ: 0,6
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 120°, AB=22√3. Найдите радиус окружности, описанной около этого треугольника.
В треугольнике ABC известны длины сторон AB=30, AC=100, точка O — центр окружности, описанной около треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D.
Найдите CD.
В равнобедренном треугольнике ABC (АВ=ВС) точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что треугольник MNK — равнобедренный.
На какой угол (в градусах) поворачивается минутная стрелка, пока часовая проходит 21°?
Найдите площадь трапеции, изображённой на рисунке.
Комментарии: