ОГЭ, Математика. Геометрия: Задача №307BE5 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №307BE5

Задача №111 из 1087
Условие задачи:

В параллелограмме KLMN точка B — середина стороны KN. Известно, что BL=BM. Докажите, что данный параллелограмм — прямоугольник.

Решение задачи:

Рассмотрим треугольники BKL и BNM. KB=BN, т.к. точка B - середина KN, BL=BM (из условия задачи), KL=NM (по свойству параллелограмма). Соответственно, треугольники BKL и BNM равны (по третьему признаку равенства треугольников).
Из равенства этих треугольников следует, что /BKL=/BNM.
KL||NM (по определению параллелограмма), рассмотрим сторону KN как секущую к этим параллельным сторонам. Тогда получается, что сумма углов BKL и BNM равна 180°, т.к. эти углы являются внутренними односторонними. Отсюда следует, что каждый из этих углов равен 90°.
Теперь рассмотрим стороны KN и LM, они параллельны (тоже по определению параллелограмма). Рассмотрим сторону KL как секущую к этим параллельным сторонам.
/NKL и /KLM - внутренние односторонние. Следовательно их сумма равна 180°. А так как /NKL=90°, то /KLM тоже равен 90°.
Аналогично доказывается, что /LMN тоже равен 90°.
Параллелограмм, у которого все углы прямые (т.е. 90°) называется прямоугольником (по определению).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №1B7017

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC относится к длине стороны AB как 9:7. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.



Задача №BE1FC6

На отрезке AB выбрана точка C так, что AC=75 и BC=10. Построена окружность с центром A, проходящая через C. Найдите длину касательной, проведённой из точки B к этой окружности.



Задача №116AB8

Точки M и N являются серединами сторон AB и BC треугольника ABC, сторона AB равна 28, сторона BC равна 19, сторона AC равна 34. Найдите MN.



Задача №219FAC

Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90°, то эти две прямые параллельны.
2) В любой треугольник можно вписать окружность.
3) Если в параллелограмме две смежные стороны равны, то такой параллелограмм является ромбом.



Задача №6606B6

Радиус окружности, описанной около равностороннего треугольника, равен 6. Найдите высоту этого треугольника.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Прямоугольник — параллелограмм, у которого все углы прямые (равны 90 градусам).
Свойства прямоугольника:
1) Противолежащие стороны равны.
2) Диагонали прямоугольника равны
3) Вокруг прямоугольника всегда можно описать окружность.
4) Диагонали точкой пересечения делятся пополам;

Признак прямоугольника: Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика