Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=5, а расстояние от точки K до стороны AB равно 5.
Обозначим точки пересечения
биссектрис со сторонами как показано на рисунке.
∠FAK=∠BEK (т.к. это
накрест-лежащие углы).
Получается, что ∠BAK=∠BEK, следовательно треугольник ABE -
равнобедренный (по
свойству равнобедренного треугольника).
Тогда AB=BE.
Треугольники ABK и EBK равны по
первому признаку равенства треугольников.
Следовательно и
высоты у этих треугольников тоже равны.
Аналогично, равны и треугольники ABK и AFK.
Получается, что высота
параллелограмма равна 2h.
Площадь
параллелограмма равна SABCD=2h*BC=2*5*5=50
Ответ: 50
Поделитесь решением
Присоединяйтесь к нам...
Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 39°. Найдите величину угла OMK. Ответ дайте в градусах.
Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 65° и 50°. Найдите меньший угол этого параллелограмма. Ответ дайте в градусах.
Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 9 и 11 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB, если cos∠BAC=√
Точка H является основанием высоты BH, проведённой из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите BH, если PK=13.
На какой угол (в градусах) поворачивается минутная стрелка, пока часовая поворачивается на 3°?

Комментарии:
(2015-10-07 22:45:45) Администратор: Валерий, спасибо за подсказку другого подхода к решению.
(2015-10-07 22:28:15) Валерий: Точки, лежащие на биссектрисах углов равноудалены от сторон этих углов, значит точка К равноудалена от AB, AD и BC, тогда расстояние от точки К до ВС равно расстоянию от точки К до AD и равно расстоянию от точки К до АВ, т.е. равно 5. Тогда высота H к ВС равна 10 и SABCD=H*BC=10*5=50. Ответ: 50. Благодарю авторов за сайт и за ответ.