В окружности с центром в точке O проведены диаметры AD и BC, угол OAB равен 70°. Найдите величину угла OCD.
Вариант №1 Предложил пользователь Гоша.
Очевидно, что угол OAB это угол DAB, а ∠DAB является вписанным и опирается на дугу BD.
∠OCD тоже является вписанным и опирается на дугу BD.
Тогда, по теореме о вписанном угле, эти углы равны:
∠OCD=∠OAB=70°.
Ответ: 70
Вариант №2
Рассмотрим треугольник АОВ. Этот треугольник
равнобедренный, т.к. ОА и ОВ - радиусы, поэтому они равны.
По
свойству равнобедренного треугольника ∠OAB=∠OBA.
Рассмотрим треугольники АОВ и COD. ∠DOC=∠AOB, т.к. они
вертикальные. СО=DO=OB=OA, т.к. это радиусы окружности.
Следовательно, треугольники АОВ и COD равны (по первому признаку). Поэтому ∠OBA=∠OAB=∠ODC=∠OCD=70°
Ответ: 70
Поделитесь решением
Присоединяйтесь к нам...
Площадь прямоугольного треугольника равна 392√
Точка О – центр окружности, /AOB=84° (см. рисунок). Найдите величину угла ACB (в градусах).
В треугольнике ABC угол C прямой, AC=4, cosA=0,8. Найдите AB.
На каком расстоянии (в метрах) от фонаря стоит человек ростом 1,8 м, если длина его тени равна 9 м, высота фонаря 5 м?
В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и ∠ACD=104°. Найдите угол между диагоналями параллелограмма. Ответ дайте в градусах.
Комментарии:
(2019-06-03 21:42:10) Администратор: Гоша, да, действительно. Элегантно и просто. Обязательно скоро размещу такое решение под Вашим именем. Спасибо!
(2019-06-03 12:10:28) гоша: А разве нельзя сразу заключить, что этот угол равен 70 градусам, так как опирается на ту же дугу что и данный угол