ОГЭ, Математика. Геометрия: Задача №A00346 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №A00346

Задача №424 из 1087
Условие задачи:

В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=16, BC=15.

Решение задачи:

По условию задачи AB перпендикулярна BC, следовательно перпендикулярна и AD (т.к. в трапеции основания параллельны).
Расстояние от точки Е до прямой CD - отрезок, перпендикулярный CD и проходящий через точку Е.
Продолжим стороны AB и CD до пересечения в точке T.
Проведем CK параллельно AB.
AK=BС (т.к. ABKC - прямоугольник).
KD=AD-AK=16-15=1
По определению косинуса: cos∠CDK=KD/CD=1/CD
Рассмотрим треугольники TCB и CKD.
∠CTB=∠DCK (т.к. это соответственные углы при параллельных прямых TA и CK)
∠TBC=∠CKD=90°
Следовательно, эти треугольники подобны (по первому признаку подобия).
Тогда, BC/KD=TC/CD
15/1=TC/CD
TC=15CD
По теореме о касательно и секущей:
TE2=TD*TC=(TC+CD)*TC=(15CD+CD)15CD=16CD*15CD=240CD2
TE=CD240=4CD15
Рассмотрим треугольники TEF и TAD.
∠CTB - общий
∠EFT=∠TAD=90°
Следовательно, применив теорему о сумме углов треугольника, получаем, что ∠TEF=∠ADT.
Следовательно, cos∠TEF=cos∠ADT.
EF=TE*cos∠TEF=TE*cos∠ADT
Так как ∠ADT и ∠CDK это один и тот же угол, то подставляем ранее найденное значение cos∠CDK=1/CD.
EF=TE/CD=4CD15/CD=415
Ответ: EF=415

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №28DF91

Площадь прямоугольного треугольника равна 503. Один из острых углов равен 60°. Найдите длину катета, прилежащего к этому углу.



Задача №11901D

Найдите острые углы прямоугольного треугольника, если его гипотенуза равна 16, а площадь равна 323.



Задача №52A416

В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен 80°. Найдите величину угла OAB.



Задача №8D1B00

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC относится к длине стороны AB как 6:5. Найдите отношение площади треугольника AKM к площади четырёхугольника KPCM.



Задача №00048B

Какое из следующих утверждений верно?
1) Площадь квадрата равна произведению двух его смежных сторон.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.

Комментарии:


(2017-03-17 02:08:01) Администратор: Карина, я добавил в решение пару строк, чтобы стало понятней.
(2017-03-16 11:04:30) Карина: Подскажите, пожалуйста, как получилось что TE*cos∠ADT=TE/CD?
(2017-02-20 21:18:33) Администратор: Марина, по теореме о касательной и секущей. Нажимайте на ссылки в тексте решения, будут показываться теоремы и определения, на которые я ссылаюсь при решении.
(2017-02-20 21:16:10) Марина: Скажите пожалуйста, почему TE2=TD*TC=(TC+CD)*ТС?
(2014-05-26 09:35:48) Администратор: Настя, по первому комментарию: указанные треугольники, конечно, подобны, но для решения подобие нам не интересно. Два угла одно треугольника равны двум углам другого треугольника, поэтому мы и применяем теорему о сумме углов треугольника, не используя подобие.
(2014-05-26 00:11:37) Настя: Спасибо большое за решение,оно мне очень помогло. Но есть один нюанс: треугольники TEF и TAD подобны по 2-м углам (как вы и указали), а потом уже по теореме о сумме углов треугольника получаем,что ∠TEF=∠ADT.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Углы при параллельных прямых и секущей.
Пусть прямая c пересекает параллельные прямые a и b. При этом образуется восемь углов.
Углы 1 и 3 — вертикальные. Очевидно, вертикальные углы равны,то есть /1=/3, а /2=/4.
Углы 1 и 2 — смежные. Сумма смежных углов равна 180°.
Углы 3 и 5 (а также 1 и 7, 2 и 8, 4 и 6) — накрест лежащие. Накрест лежащие углы равны.
Углы 1 и 6 — односторонние. Они лежат по одну сторону от секущей. Углы 4 и 7 — тоже односторонние. Сумма односторонних углов равна 180°.
Углы 2 и 6 (а также 3 и 7, 1 и 5, 4 и 8) называются соответственными. Cоответственные углы равны.
Углы 3 и 5 (а также 2 и 8, 1 и 7, 4 и 6) называют накрест лежащими. Накрест лежащие углы равны.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика