ОГЭ, Математика. Геометрия: Задача №A00346 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №A00346

Задача №424 из 1087
Условие задачи:

В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=16, BC=15.

Решение задачи:

По условию задачи AB перпендикулярна BC, следовательно перпендикулярна и AD (т.к. в трапеции основания параллельны).
Расстояние от точки Е до прямой CD - отрезок, перпендикулярный CD и проходящий через точку Е.
Продолжим стороны AB и CD до пересечения в точке T.
Проведем CK параллельно AB.
AK=BС (т.к. ABKC - прямоугольник).
KD=AD-AK=16-15=1
По определению косинуса: cos∠CDK=KD/CD=1/CD
Рассмотрим треугольники TCB и CKD.
∠CTB=∠DCK (т.к. это соответственные углы при параллельных прямых TA и CK)
∠TBC=∠CKD=90°
Следовательно, эти треугольники подобны (по первому признаку подобия).
Тогда, BC/KD=TC/CD
15/1=TC/CD
TC=15CD
По теореме о касательно и секущей:
TE2=TD*TC=(TC+CD)*TC=(15CD+CD)15CD=16CD*15CD=240CD2
TE=CD240=4CD15
Рассмотрим треугольники TEF и TAD.
∠CTB - общий
∠EFT=∠TAD=90°
Следовательно, применив теорему о сумме углов треугольника, получаем, что ∠TEF=∠ADT.
Следовательно, cos∠TEF=cos∠ADT.
EF=TE*cos∠TEF=TE*cos∠ADT
Так как ∠ADT и ∠CDK это один и тот же угол, то подставляем ранее найденное значение cos∠CDK=1/CD.
EF=TE/CD=4CD15/CD=415
Ответ: EF=415

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №AC2DC1

В параллелограмме ABCD точка M — середина стороны CD. Известно, что MA=MB. Докажите, что данный параллелограмм — прямоугольник.



Задача №072B2F

В треугольнике ABC BM – медиана и BH – высота. Известно, что AC=97 и BC=BM. Найдите AH.



Задача №8A498A

Найдите площадь трапеции, изображённой на рисунке.



Задача №5F0BC9

Синус острого угла A треугольника ABC равен . Найдите CosA.



Задача №03D0F6

Две касающиеся внешним образом в точке K окружности, радиусы которых равны 39 и 42, вписаны в угол с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.

Комментарии:


(2017-03-17 02:08:01) Администратор: Карина, я добавил в решение пару строк, чтобы стало понятней.
(2017-03-16 11:04:30) Карина: Подскажите, пожалуйста, как получилось что TE*cos∠ADT=TE/CD?
(2017-02-20 21:18:33) Администратор: Марина, по теореме о касательной и секущей. Нажимайте на ссылки в тексте решения, будут показываться теоремы и определения, на которые я ссылаюсь при решении.
(2017-02-20 21:16:10) Марина: Скажите пожалуйста, почему TE2=TD*TC=(TC+CD)*ТС?
(2014-05-26 09:35:48) Администратор: Настя, по первому комментарию: указанные треугольники, конечно, подобны, но для решения подобие нам не интересно. Два угла одно треугольника равны двум углам другого треугольника, поэтому мы и применяем теорему о сумме углов треугольника, не используя подобие.
(2014-05-26 00:11:37) Настя: Спасибо большое за решение,оно мне очень помогло. Но есть один нюанс: треугольники TEF и TAD подобны по 2-м углам (как вы и указали), а потом уже по теореме о сумме углов треугольника получаем,что ∠TEF=∠ADT.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Углы при параллельных прямых и секущей.
Пусть прямая c пересекает параллельные прямые a и b. При этом образуется восемь углов.
Углы 1 и 3 — вертикальные. Очевидно, вертикальные углы равны,то есть /1=/3, а /2=/4.
Углы 1 и 2 — смежные. Сумма смежных углов равна 180°.
Углы 3 и 5 (а также 1 и 7, 2 и 8, 4 и 6) — накрест лежащие. Накрест лежащие углы равны.
Углы 1 и 6 — односторонние. Они лежат по одну сторону от секущей. Углы 4 и 7 — тоже односторонние. Сумма односторонних углов равна 180°.
Углы 2 и 6 (а также 3 и 7, 1 и 5, 4 и 8) называются соответственными. Cоответственные углы равны.
Углы 3 и 5 (а также 2 и 8, 1 и 7, 4 и 6) называют накрест лежащими. Накрест лежащие углы равны.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика