Прямая, параллельная стороне
AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=3:4, KM=18.
Рассмотрим треугольники ABC и KBM.
/B - общий.
/BAC=/BKM (т.к. это
соответственные углы)
/BCA=/BMK (т.к. это тоже
соответственные углы)
Следовательно, эти треугольники
подобны по
первому признаку подобия.
Тогда по
определению подобных треугольников:
BA/BK=AC/KM
(BK+KA)/BK=AC/KM
1+KA/BK=AC/KM
1+4/3=AC/KM
7/3=AC/18
AC=7*18/3=7*6=42
Ответ: AC=42
Поделитесь решением
Присоединяйтесь к нам...
Найдите тангенс угла С треугольника ABC, изображённого на рисунке.
В параллелограмме KLMN точка A — середина стороны LM. Известно, что KA=NA. Докажите, что данный параллелограмм — прямоугольник.
Угол A трапеции ABCD с основаниями AD и BC, вписанной в окружность, равен 52°. Найдите угол B этой трапеции. Ответ дайте в градусах.
Сторона квадрата равна 3√2. Найдите диагональ этого квадрата.
На окружности с центром в точке O отмечены точки A и B так, что ∠AOB=66°. Длина меньшей дуги AB равна 99. Найдите длину большей дуги AB.
Комментарии: