Укажите номера верных утверждений.
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Вертикальные углы равны.
3) Любая биссектриса равнобедренного треугольника является его медианой.
Рассмотрим каждое утверждение:
1) "Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны". Это утверждение верно по
первому признаку подобия.
2) "Вертикальные углы равны", это утверждение верно, по
свойству углов.
3) "Любая биссектриса равнобедренного треугольника является его медианой", это утверждение неверно, т.к., по
свойству равнобедренного треугольника, только
биссектриса, проведенная к основанию, совпадает с
медианой и высотой.
Поделитесь решением
Присоединяйтесь к нам...
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=12 и MB=18. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Точка О – центр окружности, /ACB=65° (см. рисунок). Найдите величину угла AOB (в градусах).
Касательные к окружности с центром O в точках A и B пересекаются под углом 6°. Найдите угол ABO. Ответ дайте в градусах.
Сторона ромба равна 40, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3:7:8. Найдите радиус окружности, если меньшая из сторон равна 20.
Комментарии:
(2017-01-26 23:57:40) Администратор: Анастасия, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2017-01-25 18:27:37) Анастасия: Какие из следующих утверждений верны? 1.Расстояние от точки, лежащей на окружности, до центра окружности равно радиусу. 2.Площади трапеции равна произведению основания трапеции на высоты. 3.Треугольника со сторонами 1,2,4 не существуют.