ОГЭ, Математика. Геометрия: Задача №307BE5 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №307BE5

Задача №111 из 1087
Условие задачи:

В параллелограмме KLMN точка B — середина стороны KN. Известно, что BL=BM. Докажите, что данный параллелограмм — прямоугольник.

Решение задачи:

Рассмотрим треугольники BKL и BNM. KB=BN, т.к. точка B - середина KN, BL=BM (из условия задачи), KL=NM (по свойству параллелограмма). Соответственно, треугольники BKL и BNM равны (по третьему признаку равенства треугольников).
Из равенства этих треугольников следует, что /BKL=/BNM.
KL||NM (по определению параллелограмма), рассмотрим сторону KN как секущую к этим параллельным сторонам. Тогда получается, что сумма углов BKL и BNM равна 180°, т.к. эти углы являются внутренними односторонними. Отсюда следует, что каждый из этих углов равен 90°.
Теперь рассмотрим стороны KN и LM, они параллельны (тоже по определению параллелограмма). Рассмотрим сторону KL как секущую к этим параллельным сторонам.
/NKL и /KLM - внутренние односторонние. Следовательно их сумма равна 180°. А так как /NKL=90°, то /KLM тоже равен 90°.
Аналогично доказывается, что /LMN тоже равен 90°.
Параллелограмм, у которого все углы прямые (т.е. 90°) называется прямоугольником (по определению).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №035C64

Центральный угол AOB опирается на хорду АВ так, что угол ОАВ равен 60°. Найдите длину хорды АВ, если радиус окружности равен 8.



Задача №7435CB

Сторона равностороннего треугольника равна 12√3. Найдите радиус окружности, описанной около этого треугольника.



Задача №81E850

На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 7 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 1 м?



Задача №805818

Стороны AC, AB, BC треугольника ABC равны 32, 14 и 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°.



Задача №4A4F32

Радиус окружности, вписанной в трапецию, равен 24. Найдите высоту этой трапеции.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Признаки равенства треугольников.
Первый признак равенства треугольников.
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Второй признак равенства треугольников.
Если сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Третий признак равенства треугольников.
Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика