Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=24, AC=21, MN=14. Найдите AM.
Рассмотрим треугольники ABC и MBN.
∠ABC - общий
∠BAC=∠BMN (соответственные углы)
Следовательно, по первому признаку подобия, данные треугольники
подобны (по двум углам).
Поэтому мы можем записать пропорцию соотношения сторон
подобных треугольников:
MN/AC=MB/AB
14/21=MB/24
MB=14*24/21=2*24/3=2*8=16
AM=AB-MB=24-16=8
Ответ: 8
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, tgB=7/6, BC=18. Найдите AC.
Найдите угол АDС равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной АВ углы, равные 30° и 40° соответственно.
В треугольнике ABC угол C равен 90°, tgB=7/6, BC=18. Найдите AC.
Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 9 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 25° и 110°. Найдите меньший угол параллелограмма.
Комментарии: