Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=24, AC=21, MN=14. Найдите AM.
Рассмотрим треугольники ABC и MBN.
∠ABC - общий
∠BAC=∠BMN (соответственные углы)
Следовательно, по первому признаку подобия, данные треугольники
подобны (по двум углам).
Поэтому мы можем записать пропорцию соотношения сторон
подобных треугольников:
MN/AC=MB/AB
14/21=MB/24
MB=14*24/21=2*24/3=2*8=16
AM=AB-MB=24-16=8
Ответ: 8
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC известно, что AB=2, BC=3, AC=4. Найдите cos∠ABC.
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 4 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 1,5 м?
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=12, а расстояние от точки K до стороны AB равно 9.
Площадь прямоугольного треугольника равна 2450√
В треугольнике ABC угол C прямой, BC=4, sinA=0,8. Найдите AB.
Комментарии: