В треугольнике ABC угол C равен 90°, sinA=8/9, AC=2√
По
определению sinA=BC/AB=8/9
BC=8AB/9
По
теореме Пифагора:
AB2=BC2+AC2
AB2=(8AB/9)2+AC2
AB2=64AB2/81+(2√
AB2-64AB2/81=4*17
(81AB2-64AB2)/81=68
17AB2=81*68
AB2=81*4=324
AB=18
Ответ: AB=18
Поделитесь решением
Присоединяйтесь к нам...
Четырехугольник ABCD вписан в окружность. Угол ABC равен 92°, угол CAD равен 60°. Найдите угол ABD. Ответ дайте в градусах.
В параллелограмме KLMN точка A — середина стороны LM. Известно, что KA=NA. Докажите, что данный параллелограмм — прямоугольник.
В треугольнике ABC угол C равен 90°, AC=24, AB=25. Найдите sinB.
На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны (см. рисунок). Оказалось, что отрезки BD и BE тоже равны. Докажите, что треугольник АВС — равнобедренный.
В прямоугольном треугольнике
ABC катет AC=8, а высота CH, опущенная на гипотенузу, равна 2√

Комментарии: