В треугольнике ABC угол C равен 90°, sinA=8/9, AC=2√
По
определению sinA=BC/AB=8/9
BC=8AB/9
По
теореме Пифагора:
AB2=BC2+AC2
AB2=(8AB/9)2+AC2
AB2=64AB2/81+(2√
AB2-64AB2/81=4*17
(81AB2-64AB2)/81=68
17AB2=81*68
AB2=81*4=324
AB=18
Ответ: AB=18
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, sinB=3/7, AB=21. Найдите AC.
Центральный угол AOB, равный
60°, опирается на хорду АВ длиной 4. Найдите радиус окружности.
Найдите площадь треугольника, изображённого на рисунке.
Высота BH ромба ABCD делит его сторону AD на отрезки AH=44 и HD=11. Найдите площадь ромба.
Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 72°. Найдите величину угла OMK. Ответ дайте в градусах.
Комментарии: