ОГЭ, Математика. Геометрия: Задача №465DF5 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Вариант №1 (Прислал пользователь Евгений)
Проведем отрезок AB.
Найдем каждую сторону треугольника ABO по теореме Пифагора:
AO2=102+82
AO2=100+64=164
AO=164
AB2=92+12
AB2=81+1=82
AB=82
BO2=92+12
BO2=81+1=82
BO=82
По теореме косинусов:
AB2=AO2+BO2-2AO*BO*cos∠AOB
(82 )2=(164 )2+(82)2-2*164*82*cos∠AOB
82=164+82-2164*82*cos∠AOB
-164=-213448*cos∠AOB
82=4*3362*cos∠AOB
82=241*82*cos∠AOB
41=41*82*cos∠AOB
cos∠AOB=41/41*82=(41)2/41*82=41/82=41/41*2= 1/2
По основной тригонометрической формуле:
sin2∠AOB+cos2∠AOB=1
sin2∠AOB+(1/2)2=1
sin2∠AOB+1/2=1
sin2∠AOB=1/2
sin∠AOB=1/2
tg∠AOB=sin∠AOB/cos∠AOB=(1/2)/(1/2)=1
Ответ: tg∠AOB=1


Вариант №2 Достроим чертеж до двух прямоугольных треугольников. Найдем тангенсы для обоих треугольников для их углов О.
1) Для синего треугольника: tgα=9/1=9
2) Для красного треугольника: tgβ=8/10=0,8
Есть тригонометрическая формула:
tg(α-β)=(tgα-tgβ)/(1+tgα*tgβ)
Вычисляем:
tg∠AOB=tg(α-β)=(9-0,8)/(1+9*0,8)=8,2/8,2=1
Ответ: tg∠AOB=1

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №165C36

Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C. Найдите длину отрезка KP, если AK=18, а сторона AC в 1,2 раза больше стороны BC.



Задача №0B5E35

Лестница соединяет точки A и B и состоит из 15 ступеней. Высота каждой ступени равна 28 см, а длина – 96 см. Найдите расстояние между точками A и B (в метрах).



Задача №56179A

Стороны AC, AB, BC треугольника ABC равны 23, 7 и 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°.



Задача №D8D261

Укажите номера верных утверждений.
1) Если угол острый, то смежный с ним угол также является острым.
2) Диагонали квадрата взаимно перпендикулярны.
3) В плоскости все точки, равноудалённые от заданной точки, лежат на одной окружности.



Задача №1113A9

Какие из данных утверждений верны? Запишите их номера.
1) Площадь квадрата равна произведению его диагоналей.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Вокруг любого параллелограмма можно описать окружность.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Синус, косинус, тангенс и котангенс угла прямоугольного треугольника.

Синус равен отношению противолежащего катета к гипотенузе.
Sin α =
Косинус равен отношению прилежащего катета к гипотенузе.
Cos α =
Тангенс равен отношению противолежащего катета к прилежащему.
Tg α =
Котангенс равен отношению прилежащего катета к противолежащему.
Ctg α =
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика