Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите диаметр окружности, если AB=15, AC=25.
OC является радиусом окружности R, AO=AC-OC.
Проведем отрезок BO. BO - так же является радиусом окружности. AB -
касательная к окружности, следовательно AB перпендикулярен BO (по
свойству касательной).
Значит треугольник ABO -
прямоугольный, тогда по
теореме Пифагора:
AO2=AB2+BO2
(AC-OC)2=AB2+R2
(25-R)2=152+R2
625-50R+R2=225+R2
625-225=50R
400=50R
R=8
D=2R=2*8=16
Ответ: D=16
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, sinB=4/9, AB=18. Найдите AC.
Площадь равнобедренного треугольника равна 196√
Найдите площадь трапеции, изображённой на рисунке.
В треугольнике ABC угол C равен 90°, BC=5, AC=3.
Найдите tgB.
Найдите площадь трапеции, диагонали которой равны 15 и 7, а средняя линия равна 10.
Комментарии: