Укажите номера верных утверждений.
1) Диагонали любого прямоугольника равны.
2) Если в треугольнике есть один острый угол, то этот треугольник остроугольный.
3) Если точка лежит на биссектрисе угла, то она равноудалена от сторон этого угла.
Рассмотрим каждое утверждение.
1) "Диагонали любого
прямоугольника равны" - это утверждение верно, т.к. является одним из
свойств прямоугольника.
2) "Если в треугольнике есть один острый угол, то этот треугольник остроугольный" - это утверждение неверно, т.к. не соответствует
определению остроугольного треугольника.
3) "Если точка лежит на
биссектрисе угла, то она равноудалена от сторон этого угла". Расстояние от точки до прямой - отрезок, проведенный из данной точки перпендикулярно прямой.
Рассмотрим рисунок.
Треугольники ABD и BCD -
прямоугольные, т.к. AD и DC - расстояние от точки D (расположенной на биссектрисе) до лучей угла. Сторона BD - общая для этих треугольников, /ABD=/CBD, по
определению биссектрисы. Следовательно,
синусы этих углов тоже равны.
По
определению синуса, sin(ABD)=sin(CBD)=AD/BD=CD/BD, следовательно AD=CD. Т.е. это утверждение верно.
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника CMD.
Основания трапеции равны 5 и 13, а высота равна 9. Найдите площадь этой трапеции.
Наклонная крыша установлена на трёх вертикальных опорах, расположенных на одной прямой. Средняя опора стоит посередине между малой и большой опорами (см. рис.). Высота малой опоры 1,8 м, высота большой опоры 2,8 м. Найдите высоту средней опоры.
Точка О – центр окружности, /BOC=100° (см. рисунок). Найдите величину угла BAC (в градусах).
В треугольнике ABC угол C прямой, BC=8, sinA=0,4. Найдите AB.
Комментарии: