ОГЭ, Математика. Геометрия: Задача №F26B00 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №F26B00

Задача №253 из 1087
Условие задачи:

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади треугольника BKP к площади треугольника AMK.

Решение задачи:

BM - медиана треугольника АВС, следовательно, она делит этот треугольник на два равных по площади треугольника ( свойство медианы).
SABM=SCMB=SABC/2
Рассмотрим треугольник ABM.
SABK+SAMK=SABM=SABC/2
AP - биссектриса, по теореме о биссектрисе можно записать AM/AB=KM/BK.
По условию задачи AC втрое больше AB, следовательно, AM в 1,5 раза больше АВ (т.к. является половиной АС)
KM/BK=1,5. Т.к. площадь треугольника вычисляется по формуле S=1/2*h*a, где а-основание и h-высота, то можем записать:
SAMK=1/2*h*KM=1/2*h*(1,5*BK),
SAMK=1/2*h*(3/2*BK)=3/2*(1/2*h*BK)=3/2*SABK (т.к. высота h для этих треугольников общая)
SABK=2/3*SAMK
SABK+SAMK=SABM=SABC/2
2/3*SAMK+SAMK=SABC/2
5/3*SAMK=SABC/2
SAMK=0,3*SABC
Как было найдено ранее, SABK=2/3*SAMK
SABK=2/3*0,3*SABC
SABK=0,2*SABC
По тому же свойству биссектрисы для треугольника ABC получаем, что AC/AB=CP/PB
AC/AB=3 (по условию задачи), следовательно, CP=3*PB
SAPC=1/2*h*PC=1/2*h*(3*PB)=3*(1/2*h*PB)=3*SABP,
SABP+SAPC=SABC
SABP+3*SABP=SABC
SABP=SABC/4
SBKP=SABP-SABK
SBKP=SABC/4-0,2*SABC=0,25*SABC-0,2*SABC=0,05*SABC
Отношение SBKP к SAMK равно 0,05/0,3=5/30=1/6
Ответ: Отношение SBKP к SAMK равно 1/6.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №080866

Площадь параллелограмма ABCD равна 5. Точка E – середина стороны AD. Найдите площадь трапеции AECB.



Задача №002D6D

Какое из следующих утверждений верно?
1) Все углы ромба равны.
2) Если стороны одного четырёхугольника соответственно равны сторонам другого четырёхугольника, то такие четырёхугольники равны.
3) Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности.



Задача №0B3CDE

Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=12, BF=5.



Задача №29D911

Наклонная крыша установлена на трёх вертикальных опорах, расположенных на одной прямой. Средняя опора стоит посередине между малой и большой опорами (см. рис.). Высота малой опоры 1,8 м, высота большой опоры 2,8 м. Найдите высоту средней опоры.



Задача №4F3CD0

Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 12 см, тангенс угла ABC равен 2,4. Найдите радиус вписанной окружности треугольника ABC.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Биссектриса угла - луч с началом в вершине угла, делящий угол на два равных угла.

Медиана треугольника - отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.

Высота треугольника — перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону. В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика