Юмор

Автор: страдалец
-Еле-еле отмыла вашу сковороду. Что там такое жирное было?
-Эээ… Тефлоновое покрытие....читать далее

ОГЭ, Математика.
Геометрия: Задача №EEE91E

Задача №619 из 1053
Условие задачи:

В трапеции ABCD основания AD и BC равны соответственно 49 и 21, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=20.

Решение задачи:

Продлим стороны AB и CD до пересечения друг с другом.
Рассмотрим треугольник AED.
По теореме о сумме углов треугольника:
180°=∠EDA+∠DAE+∠AED
180°=90°+∠AED
∠AED=90°
Следовательно треугольник AED - прямоугольный.
Рассмотрим треугольники AED и BEC.
∠AED - общий
∠EBC=∠EAD (т.к. это соответственные углы)
Треугольники AED и BEC подобны (по первому признаку подобия треугольников).
Тогда по определению подобия:
AD/BC=AE/BE
AD/BC=(AB+BE)/BE
49/21=(20+BE)/BE
49BE/21=20+BE
28BE/21=20
BE=20*21/28=15
Обозначим точку F - точку касания прямой CD и окружности.
OF - искомый радиус окружности. Он перпендикулярен касательной EC (по свойству касательной).
Проведем отрезок ОК перпендикулярно АВ.
OK - серединный перпендикуляр к хорде AB ( третье свойство хорды)
Получается, что BK=AB/2=20/2=10.
EK=BE+BK=15+10=25
EK=OF=R=25, так как OKEF - прямоугольник.
Ответ: 25

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №4DCFDB

Радиус вписанной в квадрат окружности равен 22√2. Найдите диагональ этого квадрата.

Задача №2EB3D5

В выпуклом четырёхугольнике ABCD углы BCA и BDA равны. Докажите, что углы ABD и ACD также равны.

Задача №2D6020

Один из углов прямоугольной трапеции равен 121°. Найдите меньший угол этой трапеции. Ответ дайте в градусах.

Задача №17EEFC

Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN и CM пересекаются в точке O, AN=12, CM=18. Найдите AO.

Задача №A3FFD2

Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=4, AC=64. Найдите AK.

Комментарии:


(2018-01-19 21:22:57) Администратор: Евгений Бакин, согласен с Вами. Решение упрощено по Вашему варианту.
(2017-12-29 11:41:46) Евгений Бакин: Проще найти сразу OF=EK=EB+BK=15+10=25

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика