Катеты прямоугольного треугольника равны 2√
Так как треугольник
прямоугольный, то можем применить
теорему Пифагора:
AB2=BC2+AC2
AB2=12+(2√
AB2=1+4*6=25
AB=5
Меньший угол лежит напротив меньшей стороны, 1<2√
Ответ: 0,2
Поделитесь решением
Присоединяйтесь к нам...
Синус острого угла A треугольника ABC равен . Найдите CosA.
Найдите угол АСО, если его сторона СА касается окружности, О — центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна 140°.
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3:7:8. Найдите радиус окружности, если меньшая из сторон равна 20.
В параллелограмме АВСD проведены перпендикуляры ВЕ и DF к диагонали АС (см. рисунок). Докажите, что отрезки ВF и DЕ равны.
Площадь прямоугольного треугольника равна 968√
Комментарии: