 На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=27, MD=18, H — точка пересечения высот треугольника ABC. Найдите AH.
На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=27, MD=18, H — точка пересечения высот треугольника ABC. Найдите AH.
Вариант 1 Предложил Андрей Середников
 Дорисуем полуокружность до полной окружности.
Дорисуем полуокружность до полной окружности.
Продлим 
высоту AD до пересечения с окружностью, обозначим точку пересечения К.
Обозначим F как точку пересечения окружности и стороны AC.
BF - является 
высотой треугольника ABC, так как для окружности ∠BFC - 
вписанный угол, который опирается на дугу в 180° (BC - диаметр), следовательно ∠BFC=180°/2=90°
1) AF*AC=AM*AK (по 
теореме о двух секущих).
2) Рассмотрим 
хорду MK.
BC - перпендикуляр к MK, проходящий через центр окружности, следовательно BC - 
серединный перпендикуляр.
Это значит, BC делит 
хорду MK пополам, т.е. MD=KD=18
3) Рассмотрим треугольники AHF и ACD.
∠DAC - общий.
∠AFH=∠ADC - это прямые углы.
Следовательно, по 
первому признаку подобия треугольников, данные треугольники 
подобны.
Тогда, по определению 
подобия, мы можем записать:
AC/AH=AD/AF => AC*AF=AD*AH
В п. 1) мы получили равенство AF*AC=AM*AK, тогда:
AM*AK=AD*AH
AH=AM*AK/AD
Из рисунка находим:
AM=AD-MD=27-18=9
AK=AD+KD=27+18=45
Тогда:
AH=9*45/27=45/3=15
Ответ: AH=15
 Проведем отрезки CM и MB.
Проведем отрезки CM и MB. Рассмотрим треугольники MBC и MDС.
Рассмотрим треугольники MBC и MDС. Вернемся к первоначальному рисунку и рассмотрим треугольники AHE и BHD.
Вернемся к первоначальному рисунку и рассмотрим треугольники AHE и BHD.Поделитесь решением
Присоединяйтесь к нам...
 Основания трапеции равны 8 и 18. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из её диагоналей.
Основания трапеции равны 8 и 18. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из её диагоналей.
Сколько досок длиной 4 м, шириной 20 см и толщиной 30 мм выйдет из бруса длиной 80 дм, имеющего в сечении прямоугольник размером 30 см на 40 см?
 В параллелограмм вписана окружность. Найдите периметр параллелограмма, если одна из его сторон равна 6.
В параллелограмм вписана окружность. Найдите периметр параллелограмма, если одна из его сторон равна 6.
 Радиус окружности, описанной около равностороннего треугольника, равен 6. Найдите высоту этого треугольника.
Радиус окружности, описанной около равностороннего треугольника, равен 6. Найдите высоту этого треугольника.
Какие из данных утверждений верны? Запишите их номера.
1) На плоскости существует единственная точка, равноудалённая от концов отрезка.
2) В любой треугольник можно вписать окружность.
3) Если в параллелограмме две смежные стороны равны, то такой параллелограмм является ромбом.
Комментарии:
(2016-12-08 19:09:59) Администратор: Юлия, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2016-12-08 15:19:31) Юлия : На боковых сторонах равнобедренного треугольника АВС отложены равные отрезки АМ и АК. Докажите что треугольник ВСМ=треугольникуСВК.
(2015-02-14 16:05:23) Денис: Могу скинуть решение: ppepsicola@mail.ru (захожу не каждый день)
(2015-02-14 16:04:36) Денис:: решал немного по-другому, получилось 22,5