На стороне BC прямоугольника ABCD, у которого AB=12 и AD=17, отмечена точка E так, что
/EAB=45°. Найдите ED.
Рассмотрим треугольник АВЕ.
/B=90° (т.к. ABCD -
прямоугольник).
/EAB=45° (по условию задачи).
Тогда по
теореме о сумме углов треугольника /BEA=180°-/B-/EAB=180°-90°-45°=45°.
Следовательно, треугольник ABE -
равнобедренный (по
свойству). Тогда AB=BE (по
определению равнобедренного треугольника).
EC=BC-BE=17-12=5 (т.к. BC=AD).
Рассмотрим треугольник ECD.
Он
прямоугольный (т.к. угол С - прямой).
Тогда по
теореме Пифагора получаем:
ED2=CD2+EC2
ED2=122+52
ED2=144+25=169
ED=13
Ответ: ED=13
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, sinA=7/17, AC=4√
Точка О – центр окружности, /ACB=24° (см. рисунок). Найдите величину угла AOB (в градусах).
Найдите площадь треугольника, изображённого на рисунке.
Найдите величину острого угла параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 1°. Ответ дайте в градусах.
Площадь параллелограмма ABCD равна 176. Точка E — середина стороны AD. Найдите площадь трапеции AECB.
Комментарии: