Угол A четырёхугольника ABCD, вписанного в окружность, равен 33°. Найдите угол C этого четырёхугольника. Ответ дайте в градусах.
Так как четырехугольник вписан в окружность, то по свойству описанной окружности:
∠A+∠C=180°
∠C=180°-∠A=180°-33°=147°
Ответ: 147
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, BC=5, AC=3.
Найдите tgB.
Точка О – центр окружности, /BAC=20° (см. рисунок). Найдите величину угла BOC (в градусах).
Прямая y=2x+b касается окружности x2+y2=5 в точке с положительной абсциссой. Определите координаты точки касания.
Основания BC и AD трапеции ABCD равны соответственно 5 и 20, BD=10. Докажите, что треугольники CBD и BDA подобны.
Радиус окружности, описанной около квадрата, равен 14√
Комментарии: