Сторона квадрата равна 3√2. Найдите диагональ этого квадрата.
По
первому свойству квадрата, все его углы прямые, следовательно можно применить теорему Пифагора.
По определению квадрата, все его стороны равны.
d2=(3√2)2+(3√2)2
d2=2(3√2)2
По первому правилу действий со степенями:
d2=2*32(√2)2
d2=2*9*2=36
d=√36=6
Ответ: 6
Поделитесь решением
Присоединяйтесь к нам...
Радиус окружности, описанной около квадрата, равен 48√2. Найдите радиус окружности, вписанной в этот квадрат.
Точка О – центр окружности, /ACB=65° (см. рисунок). Найдите величину угла AOB (в градусах).
Углы B и C треугольника ABC равны соответственно 65° и 85°. Найдите BC, если радиус окружности, описанной около треугольника ABC, равен 14.
Найдите площадь параллелограмма, изображённого на рисунке.
Косинус острого угла A треугольника ABC равен . Найдите sinA.
Комментарии: