На стороне AC треугольника ABC отмечена точка D так, что AD=3, DC=7. Площадь треугольника ABC равна 20. Найдите площадь треугольника BCD.
Для вычисления площади треугольника существует несколько формул. Ни для одной из них у нас не хватает данных.
Значит недостающие данные надо получить.
Посмотрим, что общее есть у треугольников ABC и BCD:
1. Сторона BC
2. Угол BCD.
Тогда лучше воспользоваться
формулой "через две стороны и угол между ними".
Площадь треугольника ABC:
SABC=(1/2)*AC*BC*sin∠BCD
SABC=(1/2)*(AD+DC)*BC*sin∠BCD
20=(1/2)*(3+7)*BC*sin∠BCD
20=(1/2)*10*BC*sin∠BCD
20=5*BC*sin∠BCD
BC*sin∠BCD=4
Площадь треугольника BCD:
SBCD=(1/2)*DC*BC*sin∠BCD
Подставляем значение BC*sin∠BCD, полученное ранее, и значение DC, известное из условия:
SBCD=(1/2)*7*4
SBCD=14
Ответ: 14
Поделитесь решением
Присоединяйтесь к нам...
Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке, лежащей на стороне BC. Найдите AB, если BC=28.
В треугольнике ABC угол C прямой, AC=8, cosA=0,4. Найдите AB.
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 6 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 0,5 м?
В трапеции ABCD AD=8, BC=5, а её площадь равна 13. Найдите площадь треугольника ABC.
Радиус окружности, описанной около равностороннего треугольника, равен 12. Найдите высоту этого треугольника.
Комментарии: