На стороне AC треугольника ABC отмечена точка D так, что AD=3, DC=7. Площадь треугольника ABC равна 20. Найдите площадь треугольника BCD.
Для вычисления площади треугольника существует несколько формул. Ни для одной из них у нас не хватает данных.
Значит недостающие данные надо получить.
Посмотрим, что общее есть у треугольников ABC и BCD:
1. Сторона BC
2. Угол BCD.
Тогда лучше воспользоваться
формулой "через две стороны и угол между ними".
Площадь треугольника ABC:
SABC=(1/2)*AC*BC*sin∠BCD
SABC=(1/2)*(AD+DC)*BC*sin∠BCD
20=(1/2)*(3+7)*BC*sin∠BCD
20=(1/2)*10*BC*sin∠BCD
20=5*BC*sin∠BCD
BC*sin∠BCD=4
Площадь треугольника BCD:
SBCD=(1/2)*DC*BC*sin∠BCD
Подставляем значение BC*sin∠BCD, полученное ранее, и значение DC, известное из условия:
SBCD=(1/2)*7*4
SBCD=14
Ответ: 14
Поделитесь решением
Присоединяйтесь к нам...
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3:4:11. Найдите радиус окружности, если меньшая из сторон равна 14.
В треугольнике ABC угол C равен 90°, BC=8, AB=10. Найдите cosB.
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 192. Найдите стороны треугольника ABC.
В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=14, BC=7.
Прямая, параллельная стороне
AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=3:4, KM=18.
Комментарии: