Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 120°, а CD=40.
Дочертим отрезки как показано на рисунке.
DE=AF, т.к. это
высоты
трапеции.
∠DCE=180°-∠BCD=180°-120°=60° (т.к. это
смежные углы).
sin(∠DCE)=ED/CD (по
определению)
sin60°=ED/CD (sin60°=√3/2 по
таблице)
√3/2=ED/40
ED=40√3/2
sin(∠ABF)=AF/AB (по
определению)
sin45°=ED/AB
AB=ED/sin45° (sin45°=√2/2 по
таблице)
Ответ: 20√6
Поделитесь решением
Присоединяйтесь к нам...
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=1:4, KM=13.
Отрезки AB и CD являются хордами окружности. Найдите длину хорды CD, если AB=20, а расстояния от центра окружности до хорд AB и CD равны соответственно 24 и 10.
Найдите площадь трапеции, изображённой на рисунке.
Точки M и N являются серединами сторон AB и BC треугольника ABC, AC=24. Найдите MN.
Окружность, вписанная в треугольник ABC, касается его сторон в точках M, K и P. Найдите углы треугольника ABC, если углы треугольника MKP равны 62°, 54° и 64°.
Комментарии:
(2023-01-22 19:06:55) адэлина: начерчите углы АВС-120 И ДВС-45 с общей стороны ВСтак, чтобы они лежали по одну сторону от нее