Укажите номера верных утверждений.
1) Если угол острый, то смежный с ним угол также является острым.
2) Диагонали квадрата взаимно перпендикулярны.
3) В плоскости все точки, равноудалённые от заданной точки, лежат на одной окружности.
Рассмотрим каждое утверждение:
1) "Если угол острый, то смежный с ним угол также является острым". Сумма
смежных углов равна 180°, следовательно, один из
смежных углов острый (<90°), то другой тупой (>90°). Т.е. это утверждение неверно.
2) "Диагонали квадрата взаимно перпендикулярны", это утверждение верно (по
свойству квадрата).
3) "В плоскости все точки, равноудалённые от заданной точки, лежат на одной окружности", это утверждение верно (по
определению окружности).
Поделитесь решением
Присоединяйтесь к нам...
В прямоугольном треугольнике ABC катет AC=25, а высота CH, опущенная на гипотенузу, равна 10√
Укажите номера верных утверждений.
1) В тупоугольном треугольнике все углы тупые.
2) В любом параллелограмме диагонали точкой пересечения делятся пополам.
3) Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка.
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 57. Найдите площадь четырёхугольника ABMN.
Укажите номера верных утверждений.
1) Центры вписанной и описанной окружностей равнобедренного треугольника совпадают.
2) Существует параллелограмм, который не является прямоугольником.
3) Сумма углов тупоугольного треугольника равна 180°.
Середина M стороны AD выпуклого четырехугольника равноудалена от всех его вершин. Найдите AD, если BC=8, а углы B и C четырёхугольника равны соответственно 129° и 96°.
Комментарии:
(2016-01-16 21:32:52) Администратор: Владимир, на нашем сайте пока нет единой базы со всеми определениями, теоремами и т.д. На сайд добавляются только те материалы, которые использовались при решении задач. Второе, в свойствах биссектрисы есть теорема о сторонах.
(2016-01-16 17:26:11) Владимир: Большое спасибо за сайт. Замечательный сайт. Очень помогает. Но вот ищу свойства высоты, и никак. Наподобие свойств медианы, бисектрисы. И второе. В свойствах бисектрисы не нашел то что она делит противоположную сторону на отрезки пропорциональные остальным двум сторонам. Или это не свойство? Тогдп что это?