Юмор

Автор: Катя
- Вовочка, у тебя в кармане сто рублей, ты попросил у отца еще сто, сколько у тебя будет д...читать далее

ОГЭ, 9-й класс. Математика: Геометрия


Задача №899 из 939. Номер задачи на WWW.FIPI.RU - 1A8C8D


На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH=4, BH=64. Найдите CH.

Решение задачи:

Вариант №1 (предложил пользователь Полина)
Рассмотрим треугольники ACH и BCH.
Докажем, что это подобные треугольники:
∠AHC=∠BHC=90° (так как CH - высота).
По теореме о сумме углов треугольника:
180°=∠CAH+∠AHC+∠HCA
180°=∠CAH+90°+∠HCA
90°=∠CAH+∠HCA
∠CAH=90°-∠HCA
Заметим, что:
∠BCH=90°-∠HCA
Получается, что ∠CAH=∠BCH
Тогда, по первому признаку подобия, данные треугольники подобны, т.е. можем записать пропорцию:
AH/CH=CH/BH
AH*BH=CH2
4*64=CH2
256=CH2
CH=√256=16
Ответ: 16


Вариант №2
Рассмотрим треугольник ABC.
Он прямоугольный, следовательно, можем применить теорему Пифагора:
AB2=AC2+BC2 (равенство 1)
Рассмотрим треугольники ACH и BCH.
Они тоже прямоугольные, так как CH - высота, следовательно, и к ним можно применить теорему Пифагора.
Для треугольника ACH:
AC2=CH2+AH2
Для треугольника BCH:
BC2=CH2+BH2
А теперь сложим эти два равенства, левую часть с левой, а правую с правой:
AC2+BC2=CH2+AH2+CH2+BH2
Левая часть равна AB2 (следует из равенства 1).
AB2=2CH2+AH2+BH2
Посмотрим на рисунок, АВ=AH+BH=4+64=68 (из условия задачи).
682=2CH2+42+642
4624=2CH2+16+4096
2CH2=4624-16-4096=512
CH2=512/2=256
CH=√256=16
Ответ: 16

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:


(2017-11-13 20:46:51) Администратор: Полина, Ваш вариант проще, поэтому я опубликовал его. Спасибо за подсказку!
(2017-11-10 09:45:48) Полина: А зачем так усложнять? Можно же использовать свойство подобных треугольников. Составить пропорцию и решить в одно действие. CH²=64*4

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Геометрия' (от 1 до 939)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2018. Все права защищены. Яндекс.Метрика