В выпуклом четырехугольнике ABCD известно, что AB=BC, AD=CD, ∠B=133°, ∠D=173°. Найдите
угол A. Ответ дайте в градусах.
Проведем отрезок BD.
Рассмотрим треугольники BCD и BAD:
AB=BC (по условию)
AD=CD (по условию)
BD - общая сторона
По
третьему признаку (по трем сторонам) данные треугольники равны.
Следовательно, ∠С=∠A, обозначим как "х".
По теореме о сумме углов n-угольника получаем уравнение (n в нашем услучае равен 4):
180°(n-2)=∠A+∠B+∠C+∠D
180°(4-2)=x+133°+x+173°
180°*2=2x+306°
360°-306°=2x
x=27°
Ответ: 27
Поделитесь решением
Присоединяйтесь к нам...
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 40:1, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 30.
В треугольнике ABC угол C равен 90°, sinA=0,75, AC=√
Окружности радиусов 25 и 100 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=8, BF=15.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=12 и MB=18. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Комментарии:
(2017-05-14 18:55:22) Администратор: Людмила, можно, но лучше показать по какой формуле.
(2017-05-13 18:47:10) Людмила: Можно сразу использовать утверждение, что сумма углов четырехугольника равна 360 град.