В трапеции ABCD известно, что AD=4, BC=3, а её площадь равна 84. Найдите площадь трапеции BCNM, где MN — средняя линия трапеции ABCD.
Площадь трапеции вычисляется по формуле: произведение полусуммы оснований и высоты.
Т.е. для трапеции ABCD можем записать:
SABCD=h*(AD+BC)/2
84=h*(4+3)/2
168=7h
h=24
Для трапеции BCNM:
SBCNM=hBCNM*(MN+BC)/2
MN - это средняя линия, значит длина равна полусумме оснований:
MN=(AD+BC)/2=(4+3)/2=3,5
Высота трапеции BCNM равна половине высоты трапеции ABCD (по
теореме Фалеса), тогда:
SBCNM=hBCNM*(MN+BC)/2=(h/2)*(3,5+BC)/2=(24/2)*(3,5+3)/2=12*3,25=39
Ответ: 39
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC известно, что AB=BC, ∠ABC=102°. Найдите угол BCA. Ответ дайте в градусах.
Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=3, AD=7, AC=20. Найдите AO.
Медиана равностороннего треугольника равна 13√3. Найдите его сторону.
Укажите номера верных утверждений.
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Вертикальные углы равны.
3) Любая биссектриса равнобедренного треугольника является его медианой.
Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 30° и 45° соответственно. Ответ дайте в градусах.
Комментарии: