В трапеции ABCD основания AD и BC равны соответственно 33 и 11,
а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=20.
Продлим стороны AB и CD до пересечения друг с другом.
Рассмотрим треугольник AED.
По
теореме о сумме углов треугольника:
180°=∠EDA+∠DAE+∠AED
180°=90°+∠AED
∠AED=90°
Следовательно треугольник AED -
прямоугольный.
Рассмотрим треугольники AED и BEC.
∠AED - общий
∠EBC=∠EAD (т.к. это
соответственные углы)
Треугольники AED и BEC
подобны (по
первому признаку подобия треугольников).
Тогда по
определению подобия:
AD/BC=AE/BE
AD/BC=(AB+BE)/BE
33/11=(20+BE)/BE
3=(20+BE)/BE
3BE=20+BE
2BE=20
BE=10
Точка F - точка касания прямой CD и окружности.
По
теореме о касательной и секущей:
EF2=BE*AE=BE*(AB+BE)=10(20+10)=300
EF=√
Рассмотрим треугольник EOK.
О - центр окружности
OB - радиус окружности
OK -
серединный перпендикуляр к
хорде AB (
третье свойство хорды)
OK=EF (т.к. KEFO -
прямоугольник)
KB=AB/2 (т.к. OK -
серединный перпендикуляр)
По
теореме Пифагора:
OB2=OK2+KB2
OB2=(√
OB2=300+100=400
OB=20=R
Ответ: 20
Поделитесь решением
Присоединяйтесь к нам...
Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите BH, если PK=13.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN=12, AC=42, NC=25.
Катеты прямоугольного треугольника равны 4√
Сторона ромба равна 32, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Докажите, что медиана треугольника делит его на два треугольника, площади которых равны между собой.
Комментарии: