В трапеции ABCD известно, что AD=4, BC=3, а её площадь равна 84. Найдите площадь трапеции BCNM, где MN — средняя линия трапеции ABCD.
Площадь трапеции вычисляется по формуле: произведение полусуммы оснований и высоты.
Т.е. для трапеции ABCD можем записать:
SABCD=h*(AD+BC)/2
84=h*(4+3)/2
168=7h
h=24
Для трапеции BCNM:
SBCNM=hBCNM*(MN+BC)/2
MN - это средняя линия, значит длина равна полусумме оснований:
MN=(AD+BC)/2=(4+3)/2=3,5
Высота трапеции BCNM равна половине высоты трапеции ABCD (по
теореме Фалеса), тогда:
SBCNM=hBCNM*(MN+BC)/2=(h/2)*(3,5+BC)/2=(24/2)*(3,5+3)/2=12*3,25=39
Ответ: 39
Поделитесь решением
Присоединяйтесь к нам...
В равнобедренную трапецию, периметр которой равен 200, а площадь равна 2000, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.
В равнобедренную трапецию, периметр которой равен 200, а площадь равна 2000, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.
В параллелограмме KLMN точка A — середина стороны LM. Известно, что KA=NA. Докажите, что данный параллелограмм — прямоугольник.
В треугольнике ABC угол C прямой, BC=3, cosB=0,6. Найдите AB.
Точка О – центр окружности, /ACB=70° (см. рисунок). Найдите величину угла AOB (в градусах).
Комментарии: