На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=69°. Найдите угол NMB. Ответ дайте в градусах.
Дуга ANB равна дуге AMB, и обе равны 180°, т.к. AB - диаметр.
∠NBA является
вписанным в окружность углом, следовательно (по
теореме о вписанном угле) дуга AN равна 69°*2=138°.
Тогда дуга NB равна 180°-138°=42°
∠NMB - тоже является
вписанным в окружность и опирается на дугу NB, следовательно он равен 42°/2=21°
Ответ: 21
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, AC=12 , tgA=2√
Найдите угол АСО, если его сторона СА касается окружности, О — центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна
140°.
Внутри параллелограмма ABCD выбрали произвольную точку E. Докажите, что сумма площадей треугольников BEC и AED равна половине площади параллелограмма.
Найдите тангенс угла AOB.
Стороны AC, AB, BC треугольника ABC равны 2√
Комментарии: