Юмор

Автор: Катя
- Вовочка, у тебя в кармане сто рублей, ты попросил у отца еще сто, сколько у тебя будет д...читать далее

ОГЭ, 9-й класс. Математика: Геометрия


Задача №769 из 936. Номер задачи на WWW.FIPI.RU - FFC91D


Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке, лежащей на стороне BC. Найдите AB, если BC=28.

Решение задачи:

BC||AD (по определению параллелограмма)
∠BAE=∠EAD (т.к. AE - биссектриса)
∠EAD=∠BEA (т.к. это накрест-лежащие углы)
Следовательно, ∠BAE=∠BEA
Получается, что треугольник ABE - равнобедренный (по свойству), и AB=BE (по определению равнобедренного треугольника).
Аналогично с треугольником ECD:
∠CED=∠CDE
EC=CD
Так как AB=CD (по свойству параллелограмма), то получается, что AB=BE=EC=CD=BC/2=28/2=14.
Ответ: 14

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:


(2015-12-12 17:48:16) Администратор: Галина, Вы совершенно правы, спасибо, что заметили. Исправлено.
(2015-12-11 08:00:19) Галина: У Вас допущена ошибка: АВ=ВЕ=ЕС=СД, значит АВ=1/2 ВС=1/2 от 28=14 Ответ 14

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Геометрия' (от 1 до 936)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2018. Все права защищены. Яндекс.Метрика