ABCDEFGHI – правильный девятиугольник. Найдите угол ADC. Ответ дайте в градусах.
Вокруг любого
правильного многоугольника можно описать окружность, сделаем это.
Очевидно, что отрезки, проведенные из центра окружности к углам девятиугольника образуют равные углы, так как разбивают девятиугольник на равные треугольники.
Такой угол (например ∠DOE) равен 360°/9=40°
Тогда ∠AOC, который опирается на дугу ABC равен:
∠AOC=40°*2=80°
∠AOC является
центральным, следовательно градусная мера дуги ABC тоже равна 80°
∠ADC тоже опирается на эту же дугу, но является
вписанным, следовательно:
∠ADC=80°/2=40° (по
теореме о вписанном угле)
Ответ: 40
Поделитесь решением
Присоединяйтесь к нам...
Точка O – центр окружности, на которой лежат точки S, T и V таким образом, что OSTV – ромб. Найдите угол OVT. Ответ дайте в градусах.
Найдите тангенс угла
AOB.
Сторона AC треугольника ABC проходит через центр описанной около него окружности. Найдите ∠C, если ∠A=81°. Ответ дайте в градусах.
В трапеции ABCD основания AD и BC равны соответственно 34 и 9, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=10.
Найдите угол ABC. Ответ дайте в градусах.
Комментарии: