В угол C величиной 83° вписана окружность, которая касается сторон угла в точках A и B. Найдите угол AOB. Ответ дайте в градусах.
Рассмотрим четырехугольник AOBC.
∠C=83° (по условию задачи).
∠CAO=∠CBO=90° (по
первому свойству касательной).
Сумма любого n-угольника равна (n-2)180°, значит сумма углов четырехугольника равна:
(4-2)180°=360°
Т.е. ∠C+∠CAO+∠CBO+∠AOB=360°
83°+90°+90°+∠AOB=360°
∠AOB=360°-83°-90°-90°
∠AOB=97°
Ответ: 97
Поделитесь решением
Присоединяйтесь к нам...
Найдите тангенс угла А треугольника ABC, изображённого на рисунке.
Сторона квадрата равна 56. Найдите радиус окружности, вписанной в этот квадрат.
Какие из данных утверждений верны? Запишите их номера.
1) Каждая из биссектрис равнобедренного треугольника является его медианой.
2) Диагонали прямоугольника равны.
3) У любой трапеции боковые стороны равны.
Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 85° и 30°. Найдите меньший угол параллелограмма.
Радиус окружности, вписанной в равнобедренную трапецию, равен 20. Найдите высоту этой трапеции.
Комментарии:
(2021-10-27 18:20:41) Лена : центр окружности описанной треуг АВС лежит на стороне АВ Найти Угол АВС если угол ВАС равен 30