В треугольнике ABC с тупым углом ACB проведены высоты AA1 и BB1. Докажите, что треугольники A1CB1 и ACB подобны.
Рассмотрим треугольники AA1C и BB1C.
∠ACA1=∠BCB1, так как они
вертикальные.
∠AA1C=∠BB1C, так как они прямые по условию задачи.
Следовательно, по
первому признаку подобия треугольников, данные треугольники
подобны.
Тогда, по
определению подобных треугольников:
AC/BC=A1C/B1C
Преобразуем это равенство:
AC/A1C=BC/B1C
Рассмотрим треугольники A1CB1 и ABC.
∠ACB=∠A1CB1, так как они
вертикальные.
Тогда, по
второму признаку подобия, данные треугольники
подобны.
Поделитесь решением
Присоединяйтесь к нам...
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=7 и MB=9. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
В треугольнике ABC угол C равен 90°, AC=12 , tgA=2√
Точки M и N являются серединами сторон AB и BC треугольника ABC, AC=24. Найдите MN.
Сторона ромба равна 38, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Сторона равностороннего треугольника равна 18√3. Найдите радиус окружности, описанной около этого треугольника.
Комментарии: